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ABSTRACT: In a preceding publication this author intro-
duced a new universal viscoelastic model to describe a
definitive relationship between constant strain rate, creep,
and stress relaxation analysis for viscoelastic polymeric
compounds. One extremely important characteristic of this
new model is that it also characterizes secondary creep very
well. Because secondary creep is the linear portion of creep
after the completion of primary creep, then a straight line
with a slope and an intercept can describe secondary creep.
To effectively define a straight line in the secondary creep
region it was found necessary to obtain averages of the
instantaneous slope and the instantaneous intercept strain
by averaging over a series of equally spaced data points in
the secondary slope region. Most importantly, this average
intercept strain was found to be independent of creep stress
and creep time. This means that all the secondary creep
straight lines must pass through the same intercept creep

strain for all creep stresses. The results presented in this
study strongly indicate that this secondary creep intercept
strain is independent of creep stress and creep time, and
appears to increase as the value of the efficiency of yield
energy dissipation decreases. Because a decrease in the effi-
ciency of yield energy dissipation, n, appears to correlate
with an increase in the elastic solid like character of a ma-
terial, then it appears that this secondary creep intercept
strain should be a direct measure of the strain that the
material can survive to retain its full elastic character. There-
fore, this secondary creep intercept strain has been desig-
nated as the “Projected Elastic Limit” of a given viscoelastic
material. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89:
2923–2936, 2003
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INTRODUCTION

In recent years the need for a simple analysis approach
that relates creep, stress relaxation, and constant strain
rate measurements all in one simple model has been
generated as a result of the extended use of finite
element analysis involving polymeric compounds1

and composites.2 One such unifying model has re-
cently been published by this author,3 which intro-
duced a new universal viscoelastic model to describe a
definitive relationship between constant strain rate,
creep, and stress relaxation analysis for viscoelastic
polymeric compounds. Recently, a better understand-
ing of the viscoelastic characteristics of this model
relative to constant strain rate yield properties and
stress relaxation has been further elucidated.4 These
new concepts of viscoelasticity introduced for this
model were consistent with the earlier efforts of Scott
Blair5 as well as the more recent efforts of Hernandez

et al.6 In addition, this model has also recently been
extended7 to better understand the similarities of the
failure criterion characteristics involving the strain at
critical creep and the strain at yield for constant strain
rate measurements.

Prior to the introduction of this new universal vis-
coelastic model several authors had attempted to de-
scribe two or more of these viscoelastic concepts in
one unifying formulation.8,9 However, most of the
effort over the years has been to simulate uniaxial
creep,10,11 stress relaxation,8 or constant strain rate
data12–15 separately. This new formulation approach
offers a reasonably simple process in which to shift
from a constant strain rate configuration to a creep
calculation or stress relaxation configuration without
changing formulation considerations or without stress
or strain discontinuities.

All three phases of the creep curve including pri-
mary, secondary, and tertiary creep have been well
represented using this new model. One extremely im-
portant attribute of this new model is that it also
characterizes secondary creep very well. As a result of
this, some surprisingly important new viscoelastic
material characteristics of a material have been eluci-
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dated directly from a careful analysis of the creep
properties of a material.

This study will show how these new viscoelastic
characteristics can be generated from creep measure-
ment evaluations using this new model. For reference,
this new universal viscoelastic model3 will be briefly
reviewed before introducing a new approach to eval-
uate the “Projected Elastic Limit” from creep measure-
ments.

BRIEF REVIEW OF THE UNIVERSAL
VISCOELASTIC MODEL RELATING

CONSTANT STRAIN RATE, CREEP, AND
STRESS RELAXATION MEASUREMENTS

The basic new viscoelastic model recently published
elsewhere3 begins with the most general equation to
fit a stress–strain curve, which can be written as

�

�y
� K� � A2�K��2 � A3�K��3 � A4�K��4. . .

� An�K��n (1)

where K � E/�y � constant for a series of strain rates
for the same polymer formulation, and A2, A3, . . . Ai

� variable constants for a series of strain rates for the
same polymer formulation.

In this study only the first three constants in eq. (1)
have been addressed as:

�

�y
� K� � A2�K��2 � A3�K��3 (2)

According to Brown13,17,18 and several other au-
thors,14,19 K � E/�y is normally a constant for a given
polymer formulation that typically ranges from 40–
60. The two other conditions required to evaluate the
constants A2 and A3 in eq. (2) would include the
following:

By definition,

� � �y, when � � �y

Second condition,

d�/d� � 0 at � � �y when � � �y (3)

Using these conditions it can be shown that if K�y

� 3

A2 �
�3 � 2K�y�

K2�y
2 (4)

A3 �
�K�y � 2�

K3�y
3 (5)

Thus, if [d(�/�y)/d�0 � 0, and if K�y � 3, then the
two extrema at � � �1 and � � �2 can be found to yield
a maximum at

�1 � �y at �1 � �y (6)

and a minimum at

�2 � �y�K2�y
2�4K�y � 9�

27�K�y � 2�2 � at �2 � �y� K�y

�3K�y � 6�� (7)

The relationship between yield stress, �y, and time
to yield, ty, can be addressed using the following
simple relationship currently included in ASTM
D2837-98a (Standard Test Method for Obtaining Hy-
drostatic Design Basis for Thermoplastic Pipe Materi-
als):

�y �
�

ty
n (8)

where �y is the engineering yield stress, ty is the time
to yield, n is the efficiency of yield energy dissipation,
and � is the constant. This relationship has also been
used by Reinhart16 to predict long-term failure stress
(which is normally close to the stress evaluated from
the stress relaxation of the yield stress) as a function of
time.

The calculated values of strain, �, can also be eval-
uated on a time scale by noting that the time, t, to
reach a given strain, �, can be evaluated from the
characteristic strain rate, �̇i, , as:

t �
�

�̇i
(9)

Also note that the yield strain, �y, and the time to
yield, ty, are also related by a characteristic strain rate,
�̇i,, as:

ty �
�y

�̇i
(10)

Preliminary experimental measurements by this au-
thor as well as others in the literature8,9 have found
that the strain at yield, �y, generally has been found to
be a linear function of the characteristic strain rate, �̇i,
for constant strain rate measurements as:

�y � �� � ��̇i (11)

where �� is the limiting strain to yield when the strain
rate approaches an infinitely small value ((�̇i 3 0)i 3
0), and � is a constant.
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Brinson and DasGupta8 point out that Crochet20

predicted theoretically that the yield strain should
decrease with an increase in strain rate. As indicated
previously,3 this author has found that � is indeed
negative for polyethylene. However, Malpass9 and
this author have found that for most ABS materials the
strain to yield often increases as the strain rate in-
creases, which would make � positive. In addition,
Brinson and DasGupta8 also found out experimentally
that the yield strain increased with an increase in
strain rate for polycarbonate.

However, it should be pointed out that the linear
function described by eq. (11) appears to be a good
approximation of the more detailed model at low
strain rates. For the full range of strain rates and
particularly for large strain rates, then eq. (11) is better
described by the following equation:

�y � �� � �0�1 � e�	�̇i� (12)

This equation has the following limits

�y 3 �� as �̇i 3 0 �very long times�

�y 3 �� � �o as �̇i 3 � �very short times�

In addition, eq. (12) can also be simplified using a
MacLaurin series of the exponential term to give

�y � �� � �o�	�̇i �
	2�̇i

2

2 � · · ·� (13)

When �̇i 
 1i �� 1, then eq. (13) reduces to

�y � �� � �o	�̇i (14)

Notice that eq. (14) is exactly the same as eq. (11) if

� � �o	 (15)

In this study, an ABS polymer will be used as an
example of a viscoelastic material to illustrate the ca-
pabilities of the models presented. Based on unpub-
lished constant strain rate measurements made by this
author, the ABS material to be used as an example in
this study will utilize the following constants (	 � 50
min, �o � 0.0044 and �� � 0.04).

Substituting eq. (10) into eq. (8) then gives

�y � �� �̇i

�y
� n

(16)

Equation (16) can then be substituted into eq. (2) to
give

� � �� �̇i

�y
� n

�K� � A2�K��2 � A3�K��3	 (17)

Although the yield strain, �y, is best described over the
full range of strain rates by eq. (12), it is often conve-
nient to use eq. (11) to simulate the yield strain, �y, at
very low strain rates to give a simplified form of both
eqs. (16) and (17) as

�y � �� �̇i

�� � ��̇i
� n

(18)

� � �� �̇i

�� � ��̇i
� n

�K� � A2�K��2 � A3�K��3	 (19)

Based on eqs. (16)–(19), it is apparent that any ten-
sile stress, �, associated with a specific strain value, �,
including the yield strength, �y, will increase with an
increase in the strain rate, �̇i. However the strain to
yield, �y, based on either eq. (11) or eq. (12) is only
mildly sensitive to strain rate, and is allowed to either
increase or decrease slightly with an increase in the
strain rate, �̇i.

It is also interesting to address the case that exists at
long times, t, or using eq. (19) at very low elongation
rates, �̇i. For this case, note that the yield stress, �y,
approaches a limiting value, ��:

�y � �� � ��̇i 3 �� as �̇i 3 0

For this case the constants A2 and A3 also approach
the following values

A
2 �
�3 � 2K���

K2��
2 (20)

A
3 �
�K�� � 2�

K3��
3 (21)

and eq. (19) reduces to

� � �� �̇i

��
� n

�K� � A
2�K��2 � A
3�K��3	 (22)

Combining eqs. (9) and (22) gives

� � �� �

��
� n� 1

tn� �K� � A
2�K��2 � A
3�K��3	 (23)

Again, it should be noted that eqs. (22) and (23)
apply only to the condition where the yield strain, �y

, approaches its limiting value of �� as a result of the
strain rate, �̇i, approaching zero (0). Modification of eq.
(23) can also be rearranged for creep analysis in the
following form:
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t � � �

��
���

��
1/n

�K� � A
2�K��2 � A
3�K��3	1/n (24)

As was indicated in a previous publication,3 eqs.
(22), (23), and (24) can be extremely helpful when
trying to address either creep or stress relaxation at
very low strain rates, �̇i, or at very long times, t.

In general, eqs. (1)–(19) can be used to describe a
complete series of uniaxial constant strain rate curves
for a given polymer formulation and/or processing
condition, as indicated for an example ABS type ma-
terial in Figure 1. These stress vs. strain curves have
been calculated primarily using eq. (17) from this new
universal viscoelastic model for a series of strain rates
from 0.002 in/min to 20 in/min. The yield stress vs.
yield strain curve also indicated in Figure 1 was cal-
culated primarily from eqs. (17) and (12), respectfully.
For reference, all of the constant strain rate curves in
Figure 1 were generated using eq. (17) with the fol-
lowing typical parameters for an ABS type polymeric
material K � 58, 	 � 50 min, �o � 0.0044, and ��

� 0.04, � � 4990 psi and n � 0.21. Again, these
constants represent typical values for an ABS material
as obtained from unpublished constant strain rate
data generated by this author. As described in a pre-
vious publication,3 a creep curve at a constant stress
such as 300 psi as indicated in Figure 1 can be devel-
oped from an identification of the strain at a series of

points at the same stress level but from a series of
constant strain rate curves.

The stress vs. strain curves in Figure 1 have been
converted to stress vs. time curves in Figure 2 using
eq. (9). The values for the yield stress vs. time to
yield in Figure 2 have been obtained by applying eq.
(8) or by applying eq. (10) to the strain-to-yield
values shown in Figure 1. For reference, the yield
stress vs. time to yield curve in Figure 2 was again
generated using the following typical parameters
for an ABS type polymeric material with � � 4990
and n � 0.21. Again, notice the locus of points that
would make up the creep curve at 300 psi as indi-
cated in Figure 2. The generation of a creep curve
from these data points will be discussed in more
detail in the next section.

CREEP CURVE GENERATION USING THE
NEW VISCOELASTIC MODEL

Creep is defined as the time-dependent increase in
strain of a viscous or viscoelastic material under sus-
tained and constant stress. As indicated in Figure 1, a
creep curve can be developed from an identification of
the strain at a series of points at the same stress level
from a series of constant strain rate curves. However,
initially the increase in stress to the level from which
the creep curve can be initiated must be simulated.

Figure 1 Calculated engingeering stress vs. strain at various strain rates for a simulated ABS material using the universal
viscoelastic model with indications of creep at 300 psi.
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Typically, the simplest simulation approach can be
achieved from a constant strain rate process that can
be used to arrive at the desired level of unchanging
stress, �C, from which the creep process can begin.
Equation (17) can then be used to generate this stress,
�, vs. strain, �, curve at a specific strain rate, �̇i, until
the desired level of stress, �C, is achieved from which
a creep process can be initiated.

Once the desired stress level, �C, has been reached
using a constant strain rate approach, then eq. (19)
must be solved for the strain to give a specific stress,
�C, as the strain rate, �̇i, is continued to be decreased to
get to longer creep strains, �C, which can then be
converted to creep times, tC. Also note that after a
designated very low effective strain rate, �̇i, is reached,
the creep time, tC, accumulated for a creep strain, �C,
can be calculated directly from eq. (24). The locus of
points involving calculated values of creep strain, �C,
and the associated creep times, tC, then constitutes the
creep curve as indicated in Figure 3.

There are four potential ways then to calculate creep
strain, �C, using eqs. (17) or (19) as a function of strain
rate, �̇i, to longer creep times, tC. These four options
include:

1. Solve eqs. (17) or (19) as a cubic equation to
calculate the appropriate creep strain, �C, at de-
creasing levels of strain rate, �̇i, but at the desired
creep stress level, �C. The creep time, tC, accumu-

lated for a specific creep strain, �C, at a specific
strain rate, �̇i, can then be calculated directly from
eq. (9).

2. Solve eqs. (17) or (19) using a numerical method
such as the Newton-Raphson method to calculate
the appropriate creep strain, �C, at decreasing
levels of strain rate, �̇i, but at the desired creep
stress level, �C. The creep time, tC, accumulated
for a specific creep strain, �C, at a specific strain
rate, �̇i, can then be calculated directly from eq.
(9).

3. Solve eqs. (17) or (19) as a constant strain rate
evaluation for each strain rate, �̇i, and then solv-
ing the eqs. (17) or (19) by trial and error for the
creep strain, �C, that yields the desired creep
stress, �C. The creep time, tC, accumulated for a
specific creep strain, �C, at each specific strain
rate, �̇i, can then be calculated directly from eq.
(9).

4. Assuming the controlling strain rates, �̇i, are very
small after the constant level of creep stress, �C, is
achieved, and assuming the relative insensitivity
of the values of A
2 and A
3 to strain rate at that
point, then the creep curve can be calculated by
close approximation directly using eq. (24). By
setting the creep stress, �C, to a constant value
then the creep time, tC, can be calculated as a
function of creep strain, �C, using eq. (24).

Figure 2 Calculated stress vs. time at different strain rates using the universal viscoelastic model with indications of creep
at 300 psi and yield stress relaxation.
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Although method 3 appears to be very time con-
suming, it can actually be evaluated relatively fast
using a spreadsheet software such as MS Excel. This
approach was also found to be particularly useful as
the yield condition for creep or the inception of ter-
tiary creep was approached and exceeded. If Option 3
is used, eqs. (17) or (19) is first applied at a constant
strain rate to increase the stress and associated strain
until the desired stress level has been achieved. After
the desired stress level has been reached, the succes-
sive strain values for the creep process can be devel-
oped by identifying the appropriate strain on succes-
sive stress strain curves that corresponds to the de-
sired level of stress being evaluated. At this point each
constant strain rate curve can be used to generate only
one strain level at a given stress level on the creep
curve, as indicated in Figures 1 and 2. Because each
constant strain rate curve can be described by eqs. (17)
or (19), then this equation can be used to calculate the
strain, �C, at the desired stress, �C, and at the charac-
teristic strain rate of, �̇i, being addressed. For a creep
process, both the yield strain, �y, and the yield
strength, �y, are functions of only the strain rate, �̇i, as
indicated in eqs. (12) and (16). Also the time, tC, for a
specific strain, �C, at a specific strain rate, �̇i, can be
calculated directly from eq. (9). Therefore, at a con-
stant stress level, �C, the creep curve for a series of
strain levels, �C, and their associated times, tC, can be
calculated from a series of constant strain rate stress–

strain curves. The locus of these calculated points then
constitutes all three phases of the creep curve includ-
ing primary, secondary, and tertiary creep as indi-
cated in Figure 3.

According to Thorkildsen,17 Primary Creep includes
all the initial changes in deformation prior to Second-
ary Creep. The first region of creep after Primary
Creep that shows a linear increase in strain with time
is called Secondary Creep. Tertiary Creep is the final
stage of creep, and it will be shown that this stage of
creep can be correlated with the yield point from
constant strain rate measurements.

Using the formulation concepts to calculate creep as
discussed in this article, the initial phase of a creep test
begins with the constant strain rate component fol-
lowed by the more typical creep process as indicated
in Figure 3. Of particular interest is the observation
that the three different phases of the creep curve in
Figure 3 plot as straight lines when plotted on a log–
log scale as indicated in Figure 4.

If the simplifying assumptions of Option 4 are ac-
ceptable after some limiting strain rate, then use of eq.
(24) allows the simplest approach to generate all three
phases of the creep curve including primary, second-
ary, and tertiary creep as indicated in Figure 4. In
addition, the creep results in Figure 4 can be described
over a much larger time scale in a very convenient
fashion using Option 4. It is interesting to note in
Figure 4 that both Option 3 and Option 4 give the

Figure 3 Calculated constant strain rate until the desired stress (300 psi) was reached followed by creep strain vs. time and
showing all three phases of creep.
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same creep curve up until the inception of tertiary
creep. At this point there is a jump in the data using
Option 3, but the results for Option 4 yield quite a
different but continuous curve near the condition as
defined by yield point failure criterion. An elucidation
of the apparent conflict between Options 3 and 4 near
creep failure as indicated in Figure 4 is easily under-
stood. Because it is not possible to go back in time,
then Option 3 is obviously the only realistic option for
a realistic creep curve.

MODELING SECONDARY CREEP USING THE
NEW VISCOELASTIC MODEL

As indicated in Figure 3, the evaluation of secondary
creep would involve the region where the creep curve
forms a straight line. By definition, a straight line for
secondary creep would involve the following equation

� � �d�

dt� t � �I (25)

The derivative defined by the slope indicated in eq.
(25) would normally require a formulation where the
strain, �, would be a direct function of time, t. Even
though we do not have a relationship with strain as a
function of time, we do have eq. (24), which describes
creep time, t, as a function of creep strain, �. Therefore,
the derivative of eq. (24) gives

dt
d�

�
t
� �1 �

1
n �1 � 2A
2�K�� � 3A
3�K��2

1 � A
2�K�� � A
3�K��2 �� (26)

The reciprocal of eq. (26) then gives the desired
derivative or slope as

d�

dt �
�n
t � 1 � A
2�K�� � A
3�K��2

1 � n � �2 � n�A
2�K�� � �3 � n�A
3�K��2�
(27)

It is apparent that the term (d�/dt)t can be conve-
niently obtained from eq. (27). A rearrangement of eq.
(25) allows the direct calculation of the intercept strain
value, �I, of the straight line as

�I � � � �d�

dt� t (28)

Substituting eq. (27) into eq. (28) then gives

�I � �� 1 � 2A
2�K�� � 3A
3�K��2

1 � n � �2 � n�A
2�K�� � �3 � n�A
3�K��2�
(29)

Note that when n � 0 then eq. (29) reduces to

�I � � (30)

Figure 4 Calculated plot of long-term creep at 300 psi stress showing the linear character of strain at both short and long
times on a log–log scale.
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This result indicates that when the efficiency of
yield energy dissipation, n, is equal to zero (n � 0),
then eq. (29) reduces to a condition where the instan-
taneous intercept strain is equal to strain. For such a
material all strains would be within the elastic limit up
to the failure condition. Such a material would prob-
ably then be best characterized as being a completely
elastic material.

Equations (27) and (29) then represent the instanta-
neous slope and the instantaneous intercept at each
creep strain, �. It is particularly important to note that
the instantaneous slope, as described by eqs. (24) and
(27), is a function of the creep stress, �, and creep
strain, �, plus all the variables indicated in Figure 1
including K � 58, �� � 0.04, � � 4990 psi, and n � 0.21.
However, the instantaneous intercept defined by eq.
(29) is only a function of creep strain, �, and the
constants K � 58, �� � 0.04, and n � 0.21. Most
importantly, the intercept strain, �I, is independent of
creep stress and creep time. This means that all the
secondary creep straight lines must pass through the
same intercept creep strain for all creep stresses. It is
also clear from eq. (29) that the location of this inter-
cept strain is also strongly dependent on the efficiency
of yield energy dissipation, n, which has previously
been shown4 to be primarily a measure of the vis-
coelastic character of a material. We will expand fur-
ther this important observation in the next sections of
this article.

EVALUATION OF SECONDARY CREEP USING
THE NEW VISCOELASTIC MODEL

As indicated in Figure 5, the instantaneous slope, d�/
dt, for creep at a constant stress of 300 psi has been
generated by combining eqs. (25) and (27) for the same
ABS example material. This instantaneous slope in
Figure 5 is directly related to the slope of graphs in
Figures 3 and 4. Note in Figure 5 that the derivative,
d�/dt, or creep slope approaches a nonzero minimum
but nearly constant value in the secondary creep re-
gion, which appears to run from a strain of approxi-
mately � � 0.016 to � � 0.04.

The creep slope in Figure 5 also goes through zero
and goes back to a slope of the opposite sign at a
strains of approximately �CC � 0.046 and � � 0.95. The
exact location of these creep slope change locations
can be obtained by simply setting the derivative de-
scribed by eq. (26) to zero by setting dt/d� � 0 and
solving for the resulting equation for the strain at
critical creep, �CC , to give

�CC � ���n � 2�A
2 � ��n � 2�2A
2
2 � 4�n � 1��n � 3�A
3

2�n � 3�A
3K
�

(31)

Critical creep has been shown in a previous article7

to be theoretically the maximum potential strain in
creep and the strain at which failure in creep would be
expected.

Figure 5 Differential (or slope) of creep strain vs. time, d�/dt, vs. creep strain (creep stress � 300 psi).
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The average slope as indicated in Figure 3 must be
obtained by averaging over a series of equally spaced
data points in the secondary slope region such that

�d�

dt�
Ave

�

¥i�1
i�k�d�

dt�
i

k (32)

Similarly, the instantaneous intercept strain, �I,
shown in Figure 6 has been generated using eq. (29) at
five different levels of the efficiency of yield energy
dissipation from n � 0.0001 to n � 1.0. The creep strain
at the maximum instantaneous intercept strain identi-
fies the center of the secondary slope region of the
creep curve. The creep strain at the maximum instan-
taneous intercept in Figure 6 also corresponds with a
minimum in the instantaneous slope in the secondary
slope region as indicated in Figure 5. Also note in
Figure 6 that the magnitude of the maximum instan-
taneous intercept strain, �I, and the location of the
center of the secondary slope region both shift with a
change in the value of the efficiency of energy dissi-
pation.

The shifts in the maximum instantaneous intercept
strain and the center of the secondary slope region
indicated in Figure 6 are more clearly visualized in
Figure 7, where they are plotted directly as a function
of the efficiency of yield energy dissipation, n. As

indicated in Figure 7, both the magnitude of the max-
imum instantaneous intercept and the strain location
at the center of the secondary slope region shift to
lower values as the efficiency of energy dissipation
increases. This result is consistent with Scott-Blair,5

who argued that for a viscoelastic material a value of
n � 0 should be more characteristic of an elastic solid
and the a value of n � 1 should be more characteristic
of a viscous liquid.

The average instantaneous intercept as indicated in
Figure 3 again must also be obtained by averaging
over a series of equally spaced data points in the
secondary slope region such that

�IAve �
¥i�1

i�k �Ii

k (33)

Examples of secondary creep at different stress lev-
els calculated for the example ABS material are shown
in Figures 8–11. Several full creep curves have been
developed in Figure 8 showing primary, secondary,
and tertiary creep using the model developed in this
study. It is very clear in Figure 8 that the location of
the large increase in strain at critical creep, �CC, would
most likely result in failure if the material did not fail
readily at the inception of tertiary creep, which would
be developed at a creep strain identified as � � ��.

Note in Figure 9 that, as expected, the secondary
creep curves for all stress levels converge at the same

Figure 6 Instantaneous secondary creep intercept strain vs. creep strain using an example ABS material for the universal
viscoelastic model at various levels of the efficiency of yield energy dissipation.
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identical secondary creep intercept strain, �IAve. The
linear secondary creep straight lines indicated in Fig-
ure 9 have been calculated using eqs. (27), (29), (31),

and (32), and the results evaluated were the same as
those included in Figure 8. In general, it has been
found that the best linear secondary creep curve can

Figure 7 Maximum intercept strain and secondary creep center strain vs. efficiency of yield energy dissipation, n.

Figure 8 Creep strain vs. time for different levels of creep stress for the example ABS materials (n � 0.21).
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be obtained by utilizing symmetric creep data evalu-
ated within approximately 18% of the magnitude of
the strain at the center of secondary creep.

The results in Figures 10 and 11 gave similar results

to those already indicated for the secondary creep in
Figure 9. However, the results in Figures 10 and 11
have been generated at two other efficiencies of yield
energy dissipation (n � 0.15 and n � 1.0). The constant

Figure 9 Secondary creep strain vs. time for different levels of creep stress for the example ABS material (n � 0.21).

Figure 10 Secondary creep strain vs. time for different levels of creep stress for the example ABS material (n � 0.15).
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projected strain intercepts from Figures 9–11 can be
summarized as

Efficiency of
yield energy dissipation, n Projected strain intercept

n � 0.15 0.019776324
n � 0.21 0.017318915
n � 1.0 0.007649199

The results in Figures 6–11 appear to indicate the
following:

1. If all other variables remain constant, then the
linear secondary creep curves at all stress levels
for a given viscoelastic material should terminate
at exactly the same creep intercept strain.

2. The magnitude of this creep intercept strain ap-
pears to be inversely proportional to the effi-
ciency of yield energy dissipation, n.

3. The value of the strain in the center of the sec-
ondary creep region and the maximum instanta-
neous creep intercept strain approach the limit-
ing yield strain at very long times (��) as the
efficiency of yield energy dissipation approaches
zero.

4. In addition, as the efficiency of yield energy dis-
sipation, n, approaches zero (n � 0), then the
intercept appears to approach the strain and all
strains for such a material appear to be within the
elastic limit up to the failure condition.

5. As the value of the efficiency of yield energy
dissipation, n, approaches 1.0 then the maximum
creep intercept strain approaches zero.

An interpretation of these results will be addressed
in the next section of this article.

UTILIZATION OF SECONDARY CREEP
MEASUREMENTS TO IDENTIFY A

MATERIALS “PROJECTED ELASTIC LIMIT”

In a recent review by this author4 the power law
constant, n, as used in the universal viscoelastic
model, was found to be a dampening factor for the
rate of dissipation of the available energy/volume
relative to time in going from one strain rate curve to
another at the yield condition. Consequently, the
power law constant n was designated4 the Efficiency
of Yield Energy Dissipation with an effective range of
0 � n � 1. Hernandez-Jimenez et al.6 also recently
reviewed several different models that have also tried
to justify a theoretical development for the constant n.
Most of these models referred back to the original
model by Scott-Blair,5 who justified the constant n
from a fractional derivative for a viscoelastic material.
If the material being described can be considered to be
viscoelastic, then Scott-Blair argued that the value of n
must exist in the range from 0(elastic solid) � n
� 1(viscous liquid). Others have expanded on Scott-
Blair’s analysis as recently reviewed by Jimenez et al.6

Figure 11 Secondary creep strain vs. time for different levels of creept stress for the example ABS material (n � 1.0).
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The major advantage of the Scott-Blair analysis is
that it does address a nice explanation of why the
value of the “efficiency of yield energy dissipation,” n,
should only range from 0 to 1. It has been found
previously4,7 that if viscoelastic materials must sur-
vive considerable application stress for very long
times they need to have “efficiency of yield energy
dissipation” values of n � 0.4 to be practical. This
result is certainly consistent with experimental data.
An explanation for this phenomena based on the
Scott-Blair analysis would describe such a viscoelastic
material as having a more elastic solid like character
than a viscous liquid-like character, because n would
be closer to 0 than to 1.

The results presented in this study strongly indicate
that the common secondary creep intercept strain,
�IAve , indicated in Figures 9–11, appears to increase as
the value of the efficiency of yield energy dissipation
decreases. Because a decrease in the efficiency of yield
energy dissipation, n, appears to correlate with an
increase in the elastic solid like character of a material,
then it appears that this secondary creep intercept
strain, �IAve, should be a direct measure of the strain
that the material can survive to retain its full elastic
character. Therefore, until it can clearly be shown to be
otherwise incorrect, this secondary creep intercept
strain, �IAve, should probably be most correctly desig-
nated as the “Projected Elastic Limit” for a given vis-
coelastic material.

CONCLUSION

In a preceding publication this author introduced a
new universal viscoelastic model to describe a defin-
itive relationship between constant strain rate, creep,
and stress relaxation analysis for viscoelastic poly-
meric compounds. All three phases of the creep curve
including primary, secondary, and tertiary creep have
been well represented using this new model. One
extremely important characteristic of this new model
is that it also characterizes secondary creep very well.
Consequently, this study has introduced a new ap-
proach to evaluate the “Projected Elastic Limit” from
secondary creep measurements.

Because secondary creep is the linear portion of
creep after the completion of primary creep, then sec-
ondary creep can be described by a straight line with
a slope and an intercept. It was shown in this study
that both the instantaneous slope, d�/dt, and the in-
stantaneous intercept strain, �I, could easily be calcu-
lated utilizing the mathematical relationships devel-
oped from this new model. However, to effectively
define a straight line in the secondary creep region it
was found necessary to obtain averages of the instan-
taneous slope and intercept by averaging over a series
of equally spaced data points in the secondary slope
region. It is particularly important to note that the

average slope in the secondary creep region was
found to be a function of the creep stress, �, and creep
strain, �, plus several other variables including K, ��,
�, and the efficiency of yield energy dissipation, n.
However, the average intercept strain from secondary
creep was found to be only a function of creep strain,
�, and the constants K, ��, and n. Most importantly,
this average intercept strain, �I, was found to be inde-
pendent of creep stress and creep time. This means
that all the secondary creep straight lines must pass
through the same intercept creep strain for all creep
stresses.

In a recent review by this author the power law
constant, n, was found to be a dampening factor for
the rate of dissipation of the available energy/volume
relative to time in going from one strain rate curve to
another at the yield condition. Consequently, the
power law constant n was designated the Efficiency of
Yield Energy Dissipation with an effective range of 0
� n � 1. If the material being described can be con-
sidered to be viscoelastic, then Scott-Blair argued that
the value of n must exist in the range from 0(elastic
solid) � n � 1(viscous liquid).

The results presented in this study strongly indicate
that the secondary creep intercept strain, IAve , is in-
dependent of creep stress and creep time and appears
to increase as the value of the efficiency of yield en-
ergy dissipation decreases. Because a decrease in the
efficiency of yield energy dissipation, n, appears to
correlate with an increase in the elastic solid-like char-
acter of a material, it then appears that this secondary
creep intercept strain, �IAve, should be a direct mea-
sure of the strain that the material can survive to retain
its full elastic character. Therefore, until it can clearly
be shown to be otherwise incorrect this secondary
creep intercept strain, �IAve, should probably be most
correctly designated as the “Projected Elastic Limit” of
a given viscoelastic material.

If this “Projected Elastic Limit” can indeed be char-
acterized by the strain �IAve, then the measurement of
this strain could play a major role in the design of
many new plastic composite applications. Indeed, it
may also be possible to not only measure this property
but it may also be possible to change the range of this
property as desired through compounding and or pro-
cessing. Such a viscoelastic material development
could include modification by forming a new partic-
ulate composite or by a combination of compounding
and other processing technologies.

It should also be recognized that the constants uti-
lized in this new viscoelastic model can be obtained
from creep, constant strain rate, and/or stress relax-
ation data. Therefore, creep measurements are not
necessarily required to determine or confirm this
“Projected Elastic Limit.”
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